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Abstract

A two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear

is considered using both discrete dislocation plasticity and a nonlocal continuum crystal plasticity theory. Only single

slip is permitted in the matrix material. The discrete dislocation results are used as numerical experiments, and we

explore the extent to which the nonlocal crystal plasticity theory can reproduce their behavior. In the nonlocal theory,

the hardening rate depends on a particular strain gradient that provides a measure of plastic (or elastic) incompatibility.

This nonlocal formulation preserves the classical structure of the incremental boundary value problem. Two composite

morphologies are considered; one gives rise to relatively high composite hardening and a dependence of the stress±strain

response on size while the other exhibits nearly ideally plastic composite response and size independence. The pre-

dictions of the nonlocal plasticity model are confronted with the results of the discrete dislocation calculations for the

overall composite stress±strain response and the phase averages of stress. Material parameters are found with which the

nonlocal continuum plasticity formulation predicts trends that are in good accord with the discrete dislocation plasticity

simulations. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is a considerable body of experimental evidence (Ebeling and Ashby, 1966; Brown and Ham, 1971;
De Guzman et al., 1993; Fleck et al., 1994; Ma and Clarke, 1995; St�olken and Evans, 1998), which shows
that inhomogeneous plastic ¯ow in crystalline solids is inherently size dependent over a scale that ranges
from a fraction of a micron to a hundred microns or so ± with the smaller being harder. Already many years
ago, the connection between size dependence and gradients of plastic deformation was made through the
notion of incompatibility, which is characterized by a certain spatial gradient of the plastic (or elastic)
distortion (Bilby et al., 1955; Kr�oner and Seeger, 1959; Nye, 1953). This notion can be related to the more
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physical concept of a dislocation density tensor and to the geometrically necessary dislocations. What
remains to be determined is how to incorporate that incompatibility measure into a continuum description
of plastic ¯ow. In Acharya and Bassani (1996, 2000), the incompatibility measure is incorporated directly
into the hardening description. Arsenlis and Parks (1999) have developed another nonlocal plasticity theory
in which a factor relating the density of geometrically necessary dislocations to plastic strain gradients is
introduced, while Fleck and Hutchinson (1993) used incompatibility to motivate a nonlocal continuum
formulation involving higher order stresses. Gurtin (2000) has proposed an approach in which the gradient
of plastic deformation is used to introduce microstresses. The precise implementation has a major e�ect on
the nature of the resulting boundary value problem. The correctness of these approaches will ultimately be
decided through a comparison of their predictions with experiment. However, detailed comparisons be-
tween the predictions of continuum plasticity with a direct dislocation based description of plastic ¯ow will
be useful in assessing the various nonlocal formulations.

As a speci®c example, plastic ¯ow of a model metal±matrix composite, with the reinforcements em-
bedded in an individual grain is considered. Attention is focused on two commonly observed characteristics
of the behavior of metal±matrix composites which are not amenable to explanation based on conventional,
size-independent plasticity theory (e.g. Nan and Clarke, 1996): (i) the stress±strain behavior is size de-
pendent for reinforcement sizes in the micron range; and (ii) the matrix stress±strain behavior that needs to
be assumed in calculations to get good agreement with experiment typically di�ers from the observed
stress±strain behavior of the unreinforced material. Discrete dislocation plasticity predictions are consistent
with these observations (Cleveringa et al., 1997, 1998). Size-dependent response emerges from the devel-
opment of a structure of geometrically necessary dislocations (Ashby, 1970) and smaller reinforcement
sizes, in the range of tenths of microns to tens of microns, lead to harder overall response, which is con-
sistent with the experimental observations (Ebeling and Ashby, 1966; Brown and Ham, 1971). Whether or
not geometrically necessary dislocations are present for a given loading history depends on the composite
morphology (Cleveringa et al., 1997). Also, the response of the composite matrix can be di�erent from that
of the homogeneous material because of the di�erent dislocation structures that develop.

In this study, we compare the predictions of the nonlocal plasticity theory of Acharya and Bassani (1996,
2000) with the discrete dislocation predictions of Cleveringa et al. (1997, 1998) for a two-dimensional
model, composite material with periodic rectangular reinforcements. The composite is subject to plane
strain simple shear with the crystal axes such that the matrix deforms in single slip. The theory of Acharya
and Bassani (1996, 2000) is based on the hypothesis that the incompatibility directly in¯uences the hard-
ening behavior of a single crystal. In their `simple theory', a particular strain gradient, which is taken to be a
measure of elastic (or plastic) incompatibility, enters the ¯ow rule only through the instantaneous hard-
ening rate. Consequently, the classical structure of incremental boundary value problems (Hill, 1958) is
preserved so that higher-order stresses and additional boundary conditions are not required. As a result,
standard ®nite-element formulations based upon purely local constitutive response, such as the single
crystal formulation in Peirce et al. (1983), are readily extended to incorporate this simple theory. Still, a
material length scale enters the hardening relation on dimensional grounds. For a particular constitutive
relation, the relative magnitudes of this material scale and the microstructural length scales, e.g. particle
size, determine the response for a particular composite morphology.

In the discrete dislocation formulation (Van der Giessen and Needleman, 1995; Cleveringa et al., 1997),
the dislocations are modeled as line defects in a linear elastic solid. Attention is restricted to small strains,
and the stress, strain and displacement ®elds are written as superpositions of ®elds due to the discrete
dislocations, which are singular inside the body, and complementary (image) ®elds that enforce the
boundary conditions. This leads to a linear elastic boundary value problem for the smooth complementary
®elds which is solved by the ®nite-element method. Thus, the long range interactions between dislocations
are accounted for through the continuum elasticity ®elds. Drag during dislocation motion, interactions with
obstacles, and dislocation nucleation and annihilation are also accounted for. These are not represented by
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the elasticity description of dislocations and are incorporated into the formulation through a set of con-
stitutive rules which are based on those proposed by Kubin et al. (1992).

Results are presented for two of the three composite morphologies investigated by Cleveringa et al.
(1997). In one of the morphologies, slip cannot propagate across the unit cell because it is blocked by the
elastic reinforcement. In this case, the composite exhibits strong strain hardening and the overall stress±
strain response is strongly size dependent. In the other morphology, there is a channel of material, where
slip can propagate unimpeded across the cell. For this composite morphology, deformation is focused in a
slip band, and the discrete dislocation calculations give rise to a slightly softening stress±strain response
that is not size dependent. The challenge for the nonlocal plasticity calculations is to predict, for matrix
plastic ¯ow properties being speci®ed for one reinforcement size and morphology, both the size and
morphology dependence of the overall composite response.

2. Problem formulation

The calculations are carried out within the context of a small displacement gradient formulation.
Cartesian tensor notation is used throughout. With geometry changes neglected, the principle of virtual
work is written asZ

V
rij d�ij dV �

Z
S

Ti dui dS; �1�

where rij are the stress tensor components, ui are the displacement ®eld components, V and S are the
volume and surface area of the body, respectively, and

Ti � rijmj; �2�

�ij � 1
2

ui;j

ÿ � uj;i

� �3�
with mi being the components of the surface normal and � �;i denoting partial di�erentiation with respect to
xi.

A two-dimensional model composite material containing elastic rectangular particles in a plastically
deforming matrix is analyzed. The particles are arranged in a doubly periodic hexagonal array as shown in
Fig. 1. Each unit cell is of width 2w and height 2c (w=c � ���

3
p

) and contains two particles of size 2wf � 2cf ,
one being located at the center of the cell. Two morphologies are considered, which have the same area
fraction, f � 0:2, of reinforcing particles: material (i) contains square particle (cf � wf , cf � 0:416c), thus
leaving a channel of unreinforced material, while material (iii) has particles with an aspect ratio of 2
(cf � 2wf , cf � 0:588c) so that all slip planes are blocked by particles; the identi®cation of the composite
morphologies follows that in Cleveringa et al. (1997, 1998).

The unit cell is subjected to plane strain and simple shear. The shearing direction is the x1-direction so
that the boundary conditions are expressed by

u1�t� � �cC; u2�t� � 0 along x2 � �c; �4�
where C�t� is the applied shear at time t. Periodic boundary conditions are imposed along the lateral sides
x1 � �w. Although these boundary conditions constrain the rotation of the particles at the cell vertices
(Fig. 1), the resulting boundary value problem is computationally more convenient than one using the most
general periodic conditions consistent with the overall simple shear. For small strains, the dependence of
the response on composite morphology will not be a�ected by the additional constraint.

The average shear stress save needed to sustain the deformation is computed from the shear stress r12,
either along the top or the bottom face of the cell:
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save � 1

2w

Z w

ÿw
r12�x1;�c�dx1: �5�

Predictions of the discrete dislocation and the nonlocal crystal plasticity formulations are compared for
the overall composite response and for the average ®elds that develop within each phase. The elastic
properties are the same in both types of analyses, and identical to those used in Cleveringa et al. (1997,
1998). Each phase is taken to be elastically isotropic, with shear modulus l � 26:3 GPa and Poisson's ratio
m � 0:33 for the matrix. The corresponding values for the reinforcement are 192:3 GPa and 0:17, respec-
tively. These values are representative for silicon carbide particles in an aluminum matrix.

2.1. Discrete dislocation plasticity

In a discrete dislocation plasticity description, dislocations are represented as line defects in a linear
elastic continuum (Nabarro, 1967; Hirth and Lothe, 1968). The formulation used here falls within the
framework of Van der Giessen and Needleman (1995), which is fully three dimensional. Applications to
date have been restricted to two dimensional boundary value problems, for both single slip, (Cleveringa
et al., 1997), and multiple slip (Cleveringa et al., 1999). Only a brief summary is given here in the context of
two dimensions and single slip; further details and a description of the general framework may be found in
these references.

The computation of the deformation history is carried out in an incremental manner. Each time step Dt
involves three main computational stages: (i) determining the forces on the dislocations, i.e. the Peach±
Koehler force; (ii) determining the rate of change of the dislocation structure, which involves the motion of
dislocations, the generation of new dislocations, their mutual annihilation, and their pinning at obstacles;
and (iii) determining the stress and strain state for the current dislocation arrangement.

In this study, only edge dislocations on a single slip system are considered, with the slip plane normal
being in the x2-direction and with the glide direction being in the x1-direction. All dislocations have the same
Burgers vector magnitude b (the value b � 2:5� 10ÿ10 m is used in the calculations here). Under these
circumstances, the Peach±Koehler force on the kth dislocation, f �k�, is simply

f �k� � r�k�12 b: �6�

2w 2 3c=

2c 2cf

2wf

U• cΓ•=

U• cΓ•=

x1

x2

. 

Fig. 1. Unit cell of a composite material with a doubly periodic array of elastic particles. All slip planes are taken to be parallel to the

applied shear direction (x1).
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The magnitude of the glide velocity v�k� of dislocation k is taken to be linearly related to the Peach±
Koehler force through the drag relation

f �k� � Bv�k�; �7�
where B is the drag coe�cient, with B � 10ÿ4 Pas taken as a representative value for aluminium (Kubin
et al., 1992). The change in the x1-position of dislocation k is v�k�Dt and annihilation of two dislocations
with opposite Burgers vector occurs when they are within a material dependent, critical annihilation dis-
tance Le, which is taken to be Le � 6b.

An initial distribution of dislocation sources and obstacles is speci®ed on each slip plane. Obstacles to
dislocation motion are modeled as ®xed points on a slip plane. Such obstacles account for the e�ects of
dislocations on other, secondary, slip systems in blocking slip on the primary slip plane, or, possibly, for the
e�ects of small precipitates. Pinned dislocations can only pass the obstacles when their Peach±Koehler force
exceeds an obstacle dependent value sobsb. All obstacles are taken to have the same strength sobs � 5:7�
10ÿ3 l, with l denoting the elastic shear modulus.

No dislocations are present initially. New dislocations are generated by simulating Frank±Read sources.
In two dimensions, a Frank±Read source is simulated by point sources on the slip plane which generate a
dislocation dipole when the magnitude of the Peach±Koehler force at the source exceeds the critical value
snucb during a period of time tnuc. The distance Lnuc between the dislocations is speci®ed as

Lnuc � l
2p�1ÿ m�

b
snuc

; �8�

where m is Poisson's ratio. At this distance, the shear stress of one dislocation acting on the other is balanced
by the slip plane shear stress. The magnitude of snuc is randomly chosen from a Gaussian distribution with
mean strength �snuc � 1:9� 10ÿ3 l and standard deviation 0:2�snuc. With m � 0:33, this mean nucleation
strength corresponds to a mean nucleation distance of Lnuc � 125b. The nucleation time for all sources is
taken as tnuc � 2:6� 106 B=l.

The displacement and stress ®elds are written as the superposition of two ®elds,

ui � ~ui � ûi; rij � ~rij � r̂ij: �9�
The �~� displacement ®eld is the superposition of the ®elds of the individual dislocations in an in®nite
medium of the homogeneous matrix material and the �̂ � ®elds represent the image ®elds that correct for the
actual boundary conditions and for the presence of the particles. The �̂ � ®elds are smooth and are solved
for by the ®nite-element method. Both the stress±strain response and the evolution of the dislocation
structure are outcomes of the boundary value solution in the discrete dislocation formulation.

2.2. Nonlocal crystal plasticity

The nonlocal continuum plasticity formulation adopted in this work is based on the simple theory
proposed by Acharya and Bassani (1996, 2000) where a particular strain gradient, which is taken to be a
measure of elastic (or plastic) incompatibility, enters the ¯ow rule only through the instantaneous hard-
ening rate. Consequently, this simple theory preserves the classical structure of incremental boundary value
problems (Hill, 1958) and does not require higher-order stresses or additional boundary conditions as, for
example, in the formulations in Fleck and Hutchinson (1997) and Shu and Fleck (1999).

The physical motivation for the nonlocal theory of crystal plasticity used here, which also motivated
the work of Fleck et al. (1994), is based on the notion of lattice incompatibility (see Acharya and Bassani
(2000) for a detailed discussion). The basic idea is that the elastic distortion of the lattice is not, in gen-
eral, compatible with a regular deformation, i.e. one that is derivable from a continuously di�erentia-
ble displacement ®eld. On the other hand, that elastic distortion is capable of representing so-called
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geometrically-necessary dislocations (Nye, 1953). In the formulation of Acharya and Bassani (1996, 2000),
the hypothesis is that this incompatibility enters the constitutive relation only through its in¯uence on the
hardening. Since the lattice incompatibility is characterized by a gradient of the elastic (or plastic) defor-
mation ®eld, a material length scale enters the theory on dimensional grounds.

In the setting of small strain kinematics, the total displacement gradient is written as the sum of elastic
and plastic parts:

ui;j � ue
ij � up

ij; �10�
where the symmetric parts form the corresponding components of total, elastic, and plastic strains, �ij, �

e
ij

and �p
ij, respectively. The plastic part of the displacement gradient is taken to arise solely from slips c�b� on

all systems �b � 1;N� according to

up
ij �

X
b

c�b�m�b�i n�b�j ; �11�

where the unit vectors m�b�i and n�b�i , respectively, denote the slip direction and slip-plane normal for system
b.

The key idea in developing the nonlocal theory is based on the observation that, even though the total
displacement gradient (and total strain) is required to be compatible with a regular deformation, i.e. a
continuously di�erentiable, single-valued displacement ®eld, neither the elastic nor plastic parts are indi-
vidually compatible in general. The signi®cance of the incompatibility measure is seen by considering the
line integral

wi �
Z xj

x0
j

vij dyj �12�

with vij�xk� denoting a second-order tensor ®eld and x0
i an arbitrarily chosen ®xed point. Application of the

classical Stokes theorem for simply connected domains gives that if Eq. (12) is path independent,

ejklvil;k � 0; �13�
where ejkl is the alternating symbol. Then, vij � wi;j and vij is said to be compatible with wi. Relation (13)
holds if vij is taken to be the total displacement gradient ui;j (Acharya and Bassani, 2000).

Accordingly, from Eqs. (13) and (11), a natural measure of incompatibility is Nye (1953) dislocation
density:

aij � ejklu
p
il;k � ejkl

X
b

c�b�;k m�b�i n�b�l : �14�

A nonvanishing tensor aij implies the existence of geometrically necessary dislocations. This measure can be
used to compute the excess of dislocations of one sign, i.e. the net Burgers vector bi, in any region bounded
by a closed curve C:

bi �
I

C
up

ij dxj �
Z

S
eljkup

ik;jrl dS; �15�

where ri is the unit normal to a surface S whose boundary is the curve C. Note that since ui;j is compatible, if
ue

ij is substituted for up
ij, from Eq. (10) the value of bi will only change sign.

In the simple nonlocal crystal plasticity model used here for the continuum calculations, the measure of
incompatibility is taken to in¯uence only the instantaneous hardening rates for individual slip systems
(Acharya and Bassani, 1996, 2000). The ¯ow rule is otherwise unchanged, irrespective whether it is rate
independent as in Hill (1966) or rate dependent as in the viscoplastic rule of Peirce et al. (1983) and used for
the ®nite element calculations presented subsequently.
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With s�j�cr taken to be the measure of hardness of slip system j, the rate of hardening under multiple-slip
deformations is given by the usual expression (Hill, 1966):

_s�j�cr �
X

b

hjb _c�b�; �16�

where hjb denotes the instantaneous slip-system hardening matrix which, in general, depends upon the
history of slip. In the nonlocal theory (Acharya and Bassani, 1996, 2000), hjb is taken to depend both on the
slips c�j� and on aij, the measure of incompatible lattice deformations (see also Luo, 1998).

For multiple slip deformations with hjb�fc�m�g; aij�, there are outstanding issues about how to apportion
the e�ects of incompatibility on each slip system or, more precisely, to each component of hjb. Given that
the present study only involves single slip and two-dimensional deformation, the remaining discussion of
hardening will be limited to when those two conditions hold. In this case, it is immediately clear that the
gradient of slip in the direction normal to a slip plane, c;knk, does not contribute to the right-hand side of
Eq. (14). Therefore, for single slip in two dimensions with c�x1; x2� and m � e1, the only nonzero component
of aij is

a13 � c;1: �17�
Hence, in this case, with _scr � h _c and incorporating the e�ect of incompatibility, the slip-system hardening-
rate, h � ds=dc, is taken to depend only on c and c;1.

Consistent with the experimentally veri®ed notion that hardening is increased in the presence of gra-
dients associated with incompatibility, in single slip a simple modi®cation of the slip system strain hard-
ening rule used in Cleveringa et al. (1997) is adopted:

h�c; c;1� � h0

c
c0

�
ÿ 1

�Nÿ1

1

"
� `2

c;1
c0

� �2
#p

; �18�

where ` is the intrinsic length scale (which is typically on the order of microns) and p is a parameter, which
is typically positive and less than unity. A similar hardening function with c;1 replaced by the appropriate
measures of incompatibility has been used by Luo (1998) in studies of torsion and biaxial stretching of ®lms
for isotropic materials.

The viscoplastic ¯ow rule for single slip, which is used in the ®nite element calculations presented below,
is taken to be a power law:

_c � _c0

s
scr

� �
s
scr

���� ����� �1=mÿ1

; �19�

where _c0 is a reference strain rate, m is the strain-rate hardening exponent, scr is the slip system hardness,
and s � r12 is the slip-system resolved shear stress.

Using

_�e
ij �Lÿ1

ijkl _rkl �20�
together with the rate form of Eqs. (10) and (11), restricting the attention to single slip, and inverting gives

_rij �Lijkl _�kl

"
ÿ _c

2
mknl� � mlnk�

#
�21�

with _c given by Eq. (19). The constitutive equation (21) has the same form as in a local theory, but with the
nonlocal (gradient) e�ect entering the expression (19) for _c through scr which evolves through a dependence
on both c and c;1 via Eqs. (16) and (18).
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Relation (21) is substituted into Eq. (1), and this forms the basis for the ®nite-element discretization. In
order to increase the stable time step, the forward gradient method of Peirce et al. (1983) is used. Calcu-
lation of the gradient c;1 for use in the hardening expression (18) is the only change required in a computer
program for the usual local crystal plasticity formulation. In this paper, the discretization is based on
rectangular elements consisting of four ``crossed'' linear displacement triangles. The values of c are stored at
the centroids of each triangular element. The gradient c;1 is computed in the following fashion: ®rst, for
each rectangle, the values of c are extrapolated from the four triangle centroids to the nodal points of the
rectangular element using bilinear shape functions. Then, the value of c associated with a node is taken to
be the average value of each rectangle connected to that node. With the rectangular element de®ned by
xÿ6 x6 x� and yÿ6 y6 y�, we set c;1 � �c� ÿ cÿ�=�x� ÿ xÿ�, where c� is the average of the two nodes
having x-coordinate x� and cÿ is the average of the two nodes having x-coordinate xÿ. The value of c;1 is
taken to be the same for each triangle making up the rectangle.

3. Comparison of discrete dislocation and nonlocal continuum plasticity predictions

The two-dimensional, discrete dislocation simulations of Cleveringa et al. (1997, 1998) are regarded as
numerical experiments for the behavior of rectangular elastic particles embedded in a plastically deforming,
single crystal matrix. Complete details of the parameters entering the calculations, as well as further ref-
erences, are given in Cleveringa et al. (1997, 1998). It su�ces to give a brief summary of the key results,
before discussing the ®t of these results with the nonlocal continuum model.

3.1. Discrete dislocation simulations

Curves of average shear stress, de®ned in Eq. (5), versus imposed shear strain C from the discrete dis-
location simulations in Cleveringa et al. (1997) are shown in Fig. 2 for the two composite morphologies,
material (i) and (iii), with a cell size c � L � 1 lm. There is essentially no overall hardening for material (i),
and in fact there is some degree of softening accompanying the strain localization. In contrast, material (iii)
displays signi®cant hardening and, as shown in Fig. 3 for c � 0:5; 1 and 2 lm (taken from Cleveringa et al.,

Fig. 2. E�ect of morphology on the discrete dislocation predictions for the overall shear-stress response.
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1998), also displays signi®cant cell size dependence. Furthermore, Cleveringa et al. (1997) demonstrated
that these di�erences cannot be captured by a local continuum model with the same single-crystal matrix
material for both composite morphologies. For the cell size they investigated, the level of matrix hardening
required in a purely local model to reproduce the dislocation results for material (iii) is signi®cantly higher
than the hardening required for material (i).

The overall behavior of material (i) is, in fact, close to that of the matrix material itself since there are
unblocked channels of slip for that composite morphology with c � 1 lm as seen in the dislocation dis-
tribution of Fig. 4a at C � 0:58 (from Cleveringa et al., 1997). Such a region of localized dislocation activity
is termed coarse slip. Other recent calculations for material (i) (not reproduced here for brevity) also display
little dependence on the absolute cell size, at least for cell sizes that are large compared to the spacing of the
slip planes which is taken to be 100 Burgers vectors or 25 nm in those calculations.

Material (iii) is signi®cantly harder because every path of slip across the cell (lines parallel to the x1-
direction) is blocked by a particle as seen in Fig. 4b, which is the dislocation distribution at C � 0:01 with
c � 1 lm (from Cleveringa et al., 1997). This di�erence in slip distribution has an important implication
with respect to lattice incompatibility or, equivalently, geometrically necessary dislocations. As discussed
with reference to Eq. (17), slip gradients in the direction normal to the slip plane, which are certainly high in
the neighborhood of the coarse slip bands of material (i), do not cause incompatibility. Blocked slip, in
contrast, not only impedes coarse slip, but it also enhances gradients in the slip plane (in the x1-direction).
Therefore, blocked slip also enhances lattice incompatibility, in particular, through c;1 which is the only
contribution to Nye's dislocation density tensor here.

3.2. Nonlocal crystal plasticity results

The discrete dislocation simulations are compared with the predictions of the nonlocal plasticity theory.
The matrix parameters entering Eqs. (18) and (19) are taken to be s0=l � 1:33� 10ÿ3, h0=l � 2:47� 10ÿ3

or 2:47� 10ÿ4, c0 � 0:002, N � 1 or 0:3, ` � 1; 5; 10 or 20 lm, p � 0:5 and strain-rate sensitivity parameters
_c0 � 0:002 sÿ1 and m � 0:005.

The single-crystal matrix parameters entering the nonlocal continuum model were chosen in an attempt
to give composite shear stress versus shear strain curves similar to the discrete dislocation simulations for
both composite morphologies at a size scale of c � 1 lm. The process of selecting matrix properties in Eq.
(18) is based on a few observations, the ®rst two of which concern parameters that enter the local part of the
matrix description: (a) h0 should be low enough to give minimal hardening for material (i); (b) at that fairly

Fig. 3. Shear-stress response to simple shear of composite materials with various size scales of particles.
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low value of h0 and for an overall shear strain C6 0:01 (as in the discrete dislocation calculations), the e�ect
of the power-law exponent N was not expected to be too signi®cant; and (c) the e�ect of incompatibility on
hardening as measured in two-dimensional single slip in terms of c;1 in Eq. (18) depends strongly on the
nonlocal parameters ` and p. The e�ects of cell size are explored by varying the nondimensional ratio c=`
with all other material parameters held ®xed (p � 0:5).

Numerical results for the average shear stress save versus applied shear strain C are plotted in Figs. 5±8
for the two composite morphologies and various material parameters and cell sizes, c, normalized by the
material length scale `, where c=`!1 corresponds to purely local behavior (` � 0). Unless speci®ed
otherwise, a mesh consisting of 680 quadrilateral elements was used for the calculations. From comparisons
of these plots with the discrete dislocation results for the overall behavior, a set of matrix material pa-
rameters can be chosen that give reasonable agreement with the results of the discreet dislocation simu-
lations. For brevity, only results for two nominal hardening rates, h0=l, and two power-law exponents, N,
are presented that together roughly bracket the discrete dislocation results. The ®rst of these results are for
material (iii). Fig. 5a and b are save versus C curves for N � 1 and for h0=l � 2:47� 10ÿ4 and
h0=l � 2:47� 10ÿ3, respectively, at various normalized cell sizes c=`. The corresponding results for N � 0:3
are plotted in Fig. 6a and b.

The purely local results, c=`!1, for material (iii) plotted in Figs. 5±8 display quite similar trends for
both levels of matrix hardening and for both hardening exponents. In particular, comparing Fig. 5a and b
shows that at C � 0:01, the shear stress given by the local theory with N � 1 and with h0=l � 2:47� 10ÿ3 is

Fig. 4. Predicted dislocation distributions in (a) material (i) and (b) material (iii).
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only a few percent higher than for the corresponding calculation with h0=l � 2:47� 10ÿ4; the di�erence in
stress level for the two local theory calculations in Fig. 6, where N � 0:3, is even smaller.

On the other hand, with nonlocal hardening behavior and c=` on the order of 0:1 to 1, there is con-
siderably more overall hardening and greater size-scale e�ects for the higher value of h0 (Figs. 5b and 6b) as
well as for the higher value of N (Fig. 5a and b). This e�ect of h0 and N on nonlocal behavior is a con-
sequence of the assumed multiplicative in¯uence of incompatibility on hardening as prescribed in Eq. (18).
(For an additive contribution to the hardening rate from incompatibility, which is also plausible, the pa-
rameters entering the purely local contribution would be expected to have less e�ect on nonlocal behavior.)

Fig. 5. Average shear stress save versus applied shear strain C for material (iii) according to the nonlocal continuum plasticity model

with N � 1 and (a) the lower matrix hardening rate, h0=l � 2:47� 10ÿ4 and (b) the higher matrix hardening rate, h0=l � 2:47� 10ÿ3,

and for various ratios of cell sizes to material length scale (c=`!1 corresponds to purely local behavior).
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Furthermore, with p P 0, this nonlocal factor leads to a slight upturn in the overall save versus C curves,
since the term in square brackets in Eq. (18) increases with increasing c;1 as c itself increases. This e�ect is
most clearly seen for N � 1; for N � 0:3 the e�ect is reduced by the softening in the local term in Eq. (18). A
smaller value of p would also lessen the upturn.

The tendency for the upturn in the overall save versus C curves at larger strains, particularly for N � 1,
can be o�set with a simple modi®cation to the way in which the slip gradient enters the hardening rate. One
such modi®cation that was adopted by Luo (1998) in studies of torsion of thin wires and biaxial stretching
of thin ®lms replaces the term c;1=c0

ÿ �2
in Eq. (18) by c2

;1= c2 � c2
0

ÿ �
which reduces the gradient-hardening

Fig. 6. Average shear stress save versus applied shear strain C for material (iii) according to the nonlocal continuum plasticity model

with N � 0:3 and (a) the lower matrix hardening rate, h0=l � 2:47� 10ÿ4 and (b) the higher matrix hardening rate,

h0=l � 2:47� 10ÿ3, and for various ratios of cell sizes to material length scale (c=`!1 corresponds to purely local behavior).
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e�ect at larger strains and, depending on the magnitude of c0, can increase the gradient e�ects at smaller
strains.

A ®ner mesh consisting of 6120 elements was used to study the accuracy of the solutions utilizing 680
elements as in Figs. 5 and 6. Fig. 7 shows that there is little di�erence in the composite stress±strain response
predicted by the two meshes for material (iii) with N � 0:3, h0=l � 2:47� 10ÿ4, and c=` � 0:2. In general,
there is good agreement between predictions based on the two mesh resolutions. It is worth noting that the
convergence was generally better for smaller values of c=` because one e�ect of nonlocality is to smooth out
gradients.

For material (i) in the range C6 0:01, we found even less dependence on N, compared to material (iii),
given the low level of overall hardening predicted by the discrete dislocation simulations. Consequently, for
brevity only the save versus C results for N � 0:3 are presented in Fig. 8a and b for h0=l � 2:47� 10ÿ4 and
h0=l � 2:47� 10ÿ3, respectively. For both hardening levels, the curves for the homogeneous matrix ma-
terial are indistinguishable from the local results (c=`!1) for material (i). With e�ects of incompatibility
on hardening included for the range of c=` considered, the initial matrix hardening rate h0=l � 2:47� 10ÿ4

gives overall hardening for material (i), which is only slightly higher than that for the pure matrix, whereas
h0=l � 2:47� 10ÿ3 leads to considerably higher hardening at the smaller size scales (smaller values of c=`),
which is not consistent with the discrete dislocation results. The lower matrix hardening rate, h0=l �
2:47� 10ÿ4, leads to trends that are more in accord with the discrete dislocation predictions.

From Figs. 5 and 6 for material (iii), we note that the average stress at C � 0:01 with purely local matrix
behavior (c=`!1) is about save=l � 2:4� 10ÿ3, while the corresponding discrete dislocation result from
Fig. 6 predicts save=l � 2:8� 10ÿ3, which is about 17% higher. At the lower level of hardening (h0=l �
2:47� 10ÿ4), for N � 1 (Fig. 5a) this di�erence is made up by the nonlocal material with c=` � 0:2 (` �
5lm); for N � 0:3 (Fig. 6a), c=` � 0:05 (` � 20 lm) raises the average stress to about the same level. Of
course, if only the behavior of material (iii) is to be reproduced by the continuum model, one could choose
other combinations of h0, N, and ` that qualitatively agree with the discrete dislocation results of Fig. 2 for
c � 1 lm. On the other hand, if the behavior of material (i), which displays little e�ect of the reinforcement
on the composite stress±strain response, is also to be accurately modeled, then a relatively low value of h0 is

Fig. 7. Comparison of coarse and ®ne mesh solutions: average shear stress save versus applied shear strain C for material (iii) with

N � 0:3, the lower matrix hardening rate, h0=l � 2:47� 10ÿ4, and c=` � 0:2.
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required. Therefore, either of the two aforementioned sets of parameters N and ` at the lower hardening
level (h0=l � 2:47� 10ÿ4) can reasonably reproduce the trends of both material (i) and material (iii) for
c � 1 lm. Again we note that the parameter set which includes N � 0:3 displays less tendency for an upturn
in the save versus C curves.

One can see from Figs. 5 and 6, that as the cell size for material (iii) decreases with the area fraction of
inclusions kept ®xed, i.e. as c=` decreases, that the overall hardening rate tends to increase. This is also seen
in the discrete dislocation results of Fig. 3. Cleveringa et al. (1998) considered a power-law ®t to results like
those in Fig. 3:

Fig. 8. Average shear stress save versus applied shear strain C for material (i) according to the nonlocal continuum plasticity model with

N � 0:3 and (a) the lower matrix hardening rate, h0=l � 2:47� 10ÿ4 and (b) the higher matrix hardening rate, h0=l � 2:47� 10ÿ3, and

for various ratios of cell sizes to material length scale (c=`!1 corresponds to purely local behavior).
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dsave

dC
/ cÿb: �22�

From over 10 simulations for di�erent cell sizes and for di�erent initial densities and distributions of
dislocation sources and obstacles, they found that at an overall shear strain of C � 0:01, the best ®t gives
b � 1=3. In the continuum model, this relationship depends both on N and h0=l. For N � 0:3, from the
®nite element results of Fig. 6 at C � 0:01, b � 0:3 for h0=l � 2:47� 10ÿ3 and b � 0:2 for h0=l �
2:47� 10ÿ4.

Next, contours of the strain and strain-gradient ®elds are presented to provide a better understanding of
the e�ects of nonlocal hardening. For material (iii), contours of plastic slip, c � R _cdt, where _c is given by
Eq. (19), for N � 1, h0=l � 2:47� 10ÿ4 are plotted in Fig. 9 for overall shear strain C � 0:01; Fig. 9a is the
nonlocal result with c=` � 0:2 and Fig. 9b is the local result (c=`!1). The corresponding contours of the
plastic slip gradient c;1 are plotted in Fig. 10a and b. In general, the e�ects of nonlocal hardening associated
with incompatible lattice deformations cause a reduction in the gradient c;1 which, in this two-dimensional,
single-slip problem, is the unique measure of incompatibility. In other words, the resulting slip (plastic
strain) ®elds for the nonlocal model tend to be smoother than for the purely local behavior.

Similar contour plots for material (i) are presented in Figs. 11 and 12 for the same set of material pa-
rameters and for c=` � 0:2. Since c;2 is the only signi®cant gradient of slip arising in that composite
morphology, which neither gives rise to incompatibility nor, therefore, to gradient hardening, there is little
di�erence between the local and nonlocal ®elds. The coarse slip band which develops in the continuous
channel of matrix material is clearly seen in Fig. 11.

Fig. 9. Contours of slip c for material (iii) with N � 1 and the lower matrix hardening rate, h0=l � 2:47� 10ÿ4, at C � 0:01: (a)

c=` � 0:2 and (b) c=`!1 corresponding to purely local behavior.
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Cleveringa et al. (1997) observed that discrete dislocation plasticity gave rise to a greater proportion of
the shear stress being carried by the reinforcement than predicted by local, size-independent plasticity
theory. To check the predictions of the nonlocal theory, we have computed phase averages of the shear
stress for material (iii) at C � 0:01 with h0=l � 2:47� 10ÿ4 and N � 1. The proportion of the stress carried
by the reinforcement decreases as c=` increases; hr12ir=save � 3:21, 3.20, 3.08 and 3.00 for c=` � 0:1, 0.2, 1.0
and 1 (the local theory), respectively, where hr12ir is the average shear stress in the reinforcement phase.
With h0=l � 2:47� 10ÿ4, N � 0:3 and c=` � 0:05, hr12ir=save � 2:96 at C � 0:01. The discrete dislocation
results in Cleveringa et al. (1997) have hr12ir=save � 3:06 at C � 0:0058, whereas their local continuum slip
calculation, which requires a much higher matrix hardening of h0=l � 4:94� 10ÿ3 in order to match the
composite stress±strain behavior with the local theory, only gives hr12ir=save � 2:36. In contrast, the non-
local theory used here, with a lightly hardening matrix, gives a good agreement with the composite phase
average shear-stress distribution. Comparison of the phase average shear stresses provides a basis for
identifying material parameters that supplements the comparison of overall stress±strain behavior. How-
ever, in addition, the discrete dislocation results show local stress concentrations in the reinforcement that
arise from dislocations piled up against the reinforcement sides. These local stress concentrations do not
occur in the nonlocal plasticity calculations, although the elevation in the average stress in the reinforce-
ment is reasonably well reproduced.

Finally, it is interesting to consider the nonlocal response when the full gradient of slip, rather than the
incompatibility measure, raises the level of hardening. As a simple example for comparison purposes,

consider the term
����������������
c2
;1 � c2

;2

q
in place of c;1 in Eq. (18) and otherwise the same description of the matrix

material as de®ned in Section 2.2. With h0=l � 2:47� 10ÿ4, for N � 0:3, and c=` � 0:2, the e�ect of c;2 is

Fig. 10. Contours of slip gradient c;1 for material (iii) with N � 1 and the lower matrix hardening rate, h0=l � 2:47� 10ÿ4, at C � 0:01:

(a) c=` � 0:2 and (b) c=`!1 corresponding to purely local behavior.
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signi®cant for material (i), whereas it is relatively small for material (iii), as seen in Fig. 13. Since there is
little e�ect of the addition of c;2 to the hardening for material (iii), the corresponding slip and slip-gradient
contours are similar to those in Figs. 9a and 10a. On the other hand, for material (i) there are signi®cant
di�erences. Fig. 14 is a contour plot of c, where Fig. 14a corresponds to the physically-based hardening

model (18), and Fig. 14b corresponds to the a hardening model with
����������������
c2
;1 � c2

;2

q
replacing c;1 in Eq. (18).

Clearly, whereas the nonlocal hardening model, which uses the gradient associated with incompatibility,
reasonably distinguishes between materials (i) and (iii), the model incorporating the full gradient does not.

4. Concluding remarks

Predictions of the nonlocal plasticity theory of Acharya and Bassani (1996, 2000) for the response of a
model composite material have been compared with the results of discrete dislocation simulations. Two
composite morphologies have been considered: for one, the discrete dislocation simulations exhibit sig-
ni®cant strain hardening, with the overall stress±strain response being strongly size-dependent; for the
other, which has a channel of material that allows slip to propagate relatively unimpeded across the cell, the
discrete dislocation response is approximately ideally plastic (slightly softening), with no signi®cant size
dependence. Material parameters are found for which the nonlocal plasticity calculations are in reasonable
agreement with the discrete dislocation predictions. It is worth emphasizing that the plastic ¯ow properties
of the nonlocal theory are ®t to the discrete dislocation results for one composite morphology and size; the
nonlocal theory then predicts the dependence of the response on morphology and size.

Fig. 11. Contours of slip c for material (i) with N � 1 and the lower matrix hardening rate, h0=l � 2:47� 10ÿ4, at C � 0:01: (a)

c=` � 0:2 and (b) c=`!1 corresponding to purely local behavior.
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Fig. 12. Contours of slip gradient c;1 for material (i) with N � 1 and the lower matrix hardening rate, h0=l � 2:47� 10ÿ4, at C � 0:01:

(a) c=` � 0:2 and (b) c=`!1 corresponding to purely local behavior.

Fig. 13. Comparison of average shear stress save versus applied shear strain C for cases where the gradient hardening depends only on

c;1 with cases where the hardening depends on c;1 and c;2, both with N � 0:3, and the lower matrix hardening rate, h0=l � 2:47� 10ÿ4

for materials (i) and (iii).
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For the two-dimensional, single-slip problem considered here, the implication of incompatible lattice
deformations in the nonlocal plasticity theory is particularly straightforward. The relevant measure is the
gradient of slip in the direction along the slip plane, i.e. in the direction of slip itself. Gradients of slip
normal to the slip plane do not give rise to incompatible lattice deformations. Consequently, the response
depends sensitively on whether the particular composite morphology leads to slip patterns that involve such
gradients. A local theory (Cleveringa et al., 1997) or a model incorporating the full gradient does not
predict the dependence of the composite behavior on the reinforcement morphology seen in the discrete
dislocation simulations.

The comparisons here have shown that, with appropriately chosen material parameters, the simple
nonlocal theory of Acharya and Bassani (1996, 2000) can reproduce several trends seen in the discrete
dislocation simulations of Cleveringa et al. (1997, 1998). The structure of the boundary value problems
within this theory is the same as for conventional size independent plasticity theories. Hence, it is easy to
implement in a standard ®nite element code. Furthermore, on computers of similar speed, the computing
time for the nonlocal plasticity calculations is a few minutes, while it is many hours for the discrete dis-
location simulations in Cleveringa et al. (1997). In particular, the time steps that can be taken in the
nonlocal theory are, for a given time integration algorithm, essentially the same as for the conventional
plasticity theory whereas much smaller time steps are required for the discrete dislocation simulations.
Thus, the computational advantage of nonlocal plasticity theory will increase for lower strain rates and
larger strains.

Many issues remain in the development of an appropriate framework for a nonlocal theory of size
dependent plasticity. For example, in the theory of Acharya and Bassani (1996, 2000), under multiple slip,
the issue of how to apportion lattice incompatibility to individual slip systems is unresolved. For the

Fig. 14. Contours of slip c for material (i) with N � 0:3 and the lower matrix hardening rate, h0=l � 2:47� 10ÿ4, at C � 0:01: (a)

hardening a function of c;1 only and (b) hardening a function of c;1 and c;2.
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theories involving higher-order stresses as in Fleck and Hutchinson (1997) and Shu and Fleck (1999), there
is the issue of appropriately specifying higher order boundary conditions. Gurtin's (2000) theory has similar
issues. In addition, subgrain dislocation structures are observed, e.g. in Hughes and Hansen (1993), that
emerge under nominally uniform macroscopic deformations. Ortiz et al. (1999) have formulated a theory
that is quite di�erent from the nonlocal plasticity theories of Acharya and Bassani (1996, 2000), Arsenlis
and Parks (1999), Fleck and Hutchinson (1997), Shu and Fleck (1999) and Gurtin's (2000), but that also
gives rise to increasing strength with decreasing size. There is, as yet, no uni®ed nonlocal plasticity
framework for describing both the e�ects of subgrain dislocation structures that can emerge under nom-
inally uniform deformations and the e�ects of geometrically necessary dislocations that are associated with
strain gradients.

Acknowledgements

J.L.B. is pleased to acknowledge the hospitality of the Division of Engineering, Brown University during
a sabbatical leave in 1997. A.N. is grateful for support from the Materials Research Science and Engi-
neering Center on On Micro- and Nano-Mechanics of Materials at Brown University (NSF Grant DMR-
9632524).

References

Acharya, A., Bassani, J.L., 1996. On non-local ¯ow theories that preserve the classical structure of incremental boundary value

problems. In: Pineau, A., Zaoui, A. (Eds.), Proceedings of the IUTAM Symposium on Micromechanics of Plasticity and Damage

of Multiphase Materials. Kluwer Academic Publishers, Dordrecht, pp. 3±10.

Acharya, A., Bassani, J.L., 2000. Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids 48, 1565±

1595.

Arsenlis, A., Parks, D.M., 1999. Crystallographic aspects of geometrically-necessary and statistically stored dislocation density. Acta

Mat. 47, 1597±1611.

Bilby, B.A., Bullough, R., Smith, E., 1955. Continuous distributions of dislocations: a new application of the methods of non-

Riemannian geometry. Proc. Roy. Soc. London A 231, 263±273.

Brown, L.M., Ham, R.K., 1971. Dislocation-particle interactions. in: Strengthening Methods in Crystals, Elsevier, Amsterdam,

pp. 12±135.

Cleveringa, H.H.M., Van der Giessen, E., Needleman, A., 1997. Comparison of discrete dislocation and continuum plasticity

predictions for a composite material. Acta Mater. 45, 3163±3179.

Cleveringa, H.H.M., Van der Giessen, E., Needleman, A., 1998. Discrete dislocation simulations and size dependent hardening in

single slip. J. Physique IV, 83±92.

Cleveringa, H.H.M., Van der Giessen, E., Needleman, A., 1999. A discrete dislocation analysis of bending. Int. J. Plast. 15, 837±868.

DeGuzman, M.S., Neubauer, G., Flinn, P., Nix, W.D., 1993. The role of indentation depth on the measured hardness of materials.

Mater. Res. Symp. Proc. 308, 613±618.

Ebeling, R., Ashby, M.F., 1966. Dispersion hardening of copper single crystals. Phil. Mag. 13, 805±834.

Fleck, N.A., Hutchinson, J.W., 1993. A phenomenological theory for strain gradient e�ects in plasticity. J. Mech. Phys. Solids 41,

1825±1857.

Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. Adv. Appl. Mech. 33, 295±361.

Fleck, N.A., Muller, G.M., Ashby, F., Hutchinson, J.W., 1994. Strain gradient plasticity: theory and experiment. Acta Metall. Mater.

42, 475±487.

Gurtin, M., 2000. On plasticity of crystals: free energy, microforces, plastic strain gradients, J. Mech. Phys. Solids 48, 989±1036.

Hill, R., 1958. A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236±249.

Hill, R., 1966. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14,

95±102.

Hirth, J.P., Lothe, J., 1968. Theory of Dislocations. McGraw Hill, New York.

Hughes, D.A., Hansen, N., 1993. Microstructural evolution in nickel during rolling from intermediate to large strains. Metall. Trans.

A 24, 2021±2037.

852 J.L. Bassani et al. / International Journal of Solids and Structures 38 (2001) 833±853



Kr�oner, E., Seeger, A., 1959. Nicht-lineare elastizit�atstheorie der versetzungen und eigenspannungen. Arch. Rat. Mech. Analys. 3,

97±119.

Kubin, L.P., Canova, G., Condat, M., Devincre, B., Pontikis, V., Br�echet, Y., 1992. Dislocations microstructures and plastic ¯ow: 3D

simulation. Solid State Phenom. 23, 24, 455±472.

Luo, M., 1998. Incompatibility theory of nonlocal plasticity and applications. Ph.D. Thesis, University of Pennsylvania.

Ma, Q., Clarke, D.R., 1995. Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853±863.

Nabarro, F.R.N., 1967. Theory of Crystal Dislocations. Oxford University Press, Oxford.

Nan, C.-W., Clarke, D.R., 1996. The in¯uence of particle size and particle fracture on the elastic/plastic deformation of metal matrix

composites. Acta Mat. 44, 3801±3811.

Nye, J.F., 1953. Some geometrical relations in dislocated crystals. Acta Metall. 1, 153±162.

Ortiz, M., Repetto, E.A., Stainier, L., 1999. A theory of subgrain dislocation structures, submitted for publication.

Peirce, D., Asaro, R.J., Needleman, A., 1983. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31,

1951±1976.

Shu, J.Y., Fleck, N.A., 1999. Strain gradient crystal plasticity: size-dependent deformation of bicrystals. J. Mech. Phys. Solids 47,

297±324.

St�olken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109±5115.

Van der Giessen, E., Needleman, A., 1995. Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3,

689±735.

J.L. Bassani et al. / International Journal of Solids and Structures 38 (2001) 833±853 853


